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Abstract. Discrete dynamical systems of the formxm+1 = f (xm) are considered, wherexm
is an n-component vector. EquationsX = f (x) define a mappingf from an n-dimensional
projective space into itself. Each component off is a rational function, i.e. a ratio of polynomials
in n dynamical variables. Maeda showed that whenf commutes with each transformationgα
of a Lie group, a reduction in the order of the dynamical system results. Given a discrete
dynamical system, the difficulty is to find its continuous symmetries. We present a way of using
f -invariant sets to find these symmetries. The approach taken is to arrange groups in order of
increasing complication and to characterize the set of dynamical systems admitting each group.
Criteria are given for recognizing and reducing the order of systems admitting subgroups of the
projective general linear group inn variables, PGL(n), or certain Lie subgroups of the Cremona
group of birational transformations inn variables,Cn. Quispelet al demonstrated the use of
canonical group variables for achieving this reduction. We develop canonical coordinates for
several groups with elementary Lie algebras and demonstrate reduction of order in each case.
Results are used to reduce the order of several examples of recursion formulae taken from the
literature on renormalizable lattice models.

1. Introduction

Lie theory includes all known solution methods for systems of differential equations. Each
method amounts to a special case of Lie’s procedure of finding continuous groups that leave
the system invariant and using them to reduce the order [1]. The books by Cohen [2] and
Stephani [3] are useful introductions. Details are given in several standard works [4–10].
Leznov and Saleliev treat Lie groups and Lie algebras in the context of continuous dynamical
systems [11]. This paper is about application of Lie groups to discrete dynamical systems
arising from physical problems.

Interest in discrete dynamics derives from several sources. One is that systems as simple
as the discrete logistic equation exhibit complicated behaviours such as period doubling. One
can apply symbolic dynamics and related tools. Another source of interest is that sometimes
discrete approximations for differential equations can be solved directly as difference
equations. Then one can study the way solutions of the difference equations approximate
those of the original differential equations. To construct solutions of differential equations
as limits one would like the approximating difference systems to be integrable [12, 13]. But
it is interesting that a variety of different continuum limits can come from the same discrete
system. Continuum limits relate to renormalization fixed points of the difference system.

Statistical mechanical models on lattices are another source of interest in discrete
dynamics. For instance, the real-space renormalization method leads to systems of recursion
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relations (nonlinear difference equations or discrete dynamical systems). The dynamical
systems can often be made approximately finite dimensional. In the special case of
problems on finitely ramified lattices, the exact renormalization recursions actually are
finite dimensional. For these cases (a) to solve the difference system exactly is to solve the
underlying physical problem exactly, so (b) one can expect whatever hidden symmetries
the original problem has to be present also in the dynamical system. This means there is
both a motive for trying to simplify such systems and a reason to hope that a simplification
of some kind can occur. In addition to the renormalizable fractals, an important set of
models is solvable on regular lattices in two dimensions [14, 15]. A key to their solvability
is the Yang–Baxter consistency relation. New solvable models can be generated by finding
solutions to these consistency conditions on the Boltzmann weights, which in turn satisfy
difference equations known to admit symmetries [16–18].

One can think of a dynamical system as a mapping of the space of dynamical variables
into itself. We consider Lie groups that also consist of mappings of the space into itself.
From this point of view the system and the group operations are on the same footing.
However, each group transformation must have an inverse, while the system map generally
does not. More over, the set of group operations is continuous with respect to the group
parameters. Nevertheless, the fundamental symmetry criterion is given most easily in terms
of mappings in the following way: When the system map commutes with each of the group
transformations one says the system admits the group or is equivariant with respect to the
group. The significance of this is that the group can then be used to reduce the order of the
dynamical system.

Lie theory gives an algorithm for finding the largest group a system of differential
equations admits (when the combined order is greater than one) [3]. The problem with
extending the theory to difference equations is that no such algorithm is known for the
discrete case. Several authors [19–24] have developed methods of detecting the symmetry
groups of the dynamical system. Chossat and Golubitsky [20, 21] have studied the problem
in connection with bifurcation and the symmetry of attractors. They prove a general theorem
on the connection between invariant sets and a subgroup ofO(n) which is a symmetry group
of the dynamical system. In particular they show that the system maps the fixed point space
of the group into itself and they also prove a theorem on the connection between period
two points and the associated symmetry group. Dellnitzet al [22, 24] prove several results
about the transitivity of invariants sets and develop a method of detecting symmetries based
on the Karhunen–Lòeve decomposition.

Concentrating on integrable systems and developing a theory in terms of complete sets
of invariant functions, Maeda [12] gave criteria for determining when a given system of
difference equations admits a given group. He also extended the idea of prolongation of the
group generators to the difference case and obtained a functional equation for generators of
the symmetry group of a given dynamical system. The analysis is restricted to symmetries
that do not involve the discrete independent variable. Quispelet al [25] demonstrated the
use of canonical group coordinates for reducing the order of a difference equation one step
at a time. The treatment includes symmetries for which the independent variable appears in
the transformation formulae. It was pointed out that even autonomous difference systems
can admit such symmetries. They showed that sometimes the functional equation for the
generators can be integrated by expanding both the difference equation and the generators at
a fixed point. This permits solving term by term for a series representation of the generators.
Unfortunately one must surmise the form of the general term, sum the series, and integrate
to obtain the canonical coordinates in order to reduce the order of the original difference
equation. Byrneset al [26] showed that a difference equation with explicit dependence on
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the independent variable can be transformed into a linear one with constant coefficients if
and only if it admits a symmetry that factors in a certain way.

Recently [27–29] one of the authors (WS) with Giona and Schwalm applied a group
theoretic analysis to discrete dynamical systems that come from renormalizing finite-
difference wave equations and transport equations on regular fractals. The strategy
for finding groups rests on certain relationships between fixed or invariant sets of the
renormalization recursions (i.e. of the dynamical system) and the fixed or invariant sets
of any group they admit. By fixed set of a given map we mean a set of points each of
which remains fixed, while an invariant set is a set mapped into itself.

Consider a discrete physical model consisting of a quadrature grid and a system of
coupled ODEs, one for each lattice site or grid point, for which time is the continuous
independent variable. By Laplace or Fourier transforming with respect to time, one arrives
at a difference system corresponding roughly to the Helmholtz PDE. Difference models of
wave mechanics or transport, such as the discrete Schrödinger equation or diffusion equation,
are related to one another by changes of time dependence and boundary conditions. For a
class of such models involving discrete Laplacian operators, it has been shown [28] that the
process of finding continuous symmetries simplifies greatly when the problem is mapped
onto diffusion with closed (zero flux) boundary conditions. The simplification is related
to the existence of conserved currents which take on their simplest form for the diffusion
problem with closed boundaries [28, 30].

This paper gives technical details necessary for reducing the order of discrete dynamical
systemS using the groupG of its continuous symmetries. Section 2 defines the dynamical
systems of interest. Section 3 summarizes basic notation for connected Lie groups.
Correspondence of the fixed and invariant sets ofS with those ofG which S admits is
described in section 4. Sections 5 and 6 give a systematic development forS admitting
subgroups of PGL(n) and certain subgroups of the Cremona groupCn respectively. These
sections address the problems of determining whether a given system admits such a group,
and if so, how to match the group parametrization to dynamical properties ofS. A
compilation of canonical variables for groups with several elementary types of Lie algebras
is given in section 7. It is shown that introduction of canonical variables leads to reduction
of order ofS in each case. The method is illustrated in section 8 where it is used to decouple
a collection of examples, most of which come from the literature on lattice models.

2. Discrete dynamical systemS

Following Maeda [12], we consider a discrete dynamical systemS as a mapping of an
n-dimensional complex space into itself,f : Cn→ Cn, such that

X = f (x) (2.1)

wherex andX aren-component vectors. One thinks of a system of first order, autonomous
difference equations. In the following, attention will be on systems for which the functions
definingf are rational. That is to say, each componentf i is a ratio of polynomials inn
variables. We do not requiref to have a single valued inverse. Thus in general one cannot
solve forx in terms of rational functions ofX. Cases of non-trivial rational transformations
with rational inverses (Cremona transformations) do exist [31, 32]. Dynamical properties
of such transformations have been studied by Maillardet al [33–38] and Veselov [39].

In contrast to the one-variable case, there may be points where a rational function of
several variables is undefined. In other words, in addition to regular points and points
that map to infinity (which present no difficulty) there can be points in the dynamical space
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where the action off is not defined. These are points where the numerator and denominator
polynomials of at least one componentf i are both zero and at which no limit exists. Such
points are tacitly excluded from some of the discussion. So is the closure of the union of the
set ofpth inverse images underf of such points for allp. One can restrict the domain of
f to the open set of regular points that remains. However, in other cases the points where
f is undefined play important roles in the development. This is true for systems admitting
the Cremona subgroups defined in section 6. Not withstanding possible difficulties, the
following analysis reduces the order of many discrete dynamical systems.

3. The Lie group G admitted by S, generators and the Lie algebra

For our purposes, a connected Lie groupG is a set of mappings of the dynamical space onto
itself. A particular group elementgα : Cn→ Cn is indexed by anr-dimensional parameter
α with componentsαi for 1 6 i 6 r in such a way thatG is a group under composition,
gα x = xα is a continuous function ofα

xα = u(x, α) (3.1)

andg0 is the identity so thatx = u(x, 0).
For the case of one parameter,G is Abelian so the parametrization can be chosen

as eithergα gβ = gα+β with real α and β, or gα gβ = gαβ with α and β real and non
negative. Except where indicated we assume additive parametrization, but sometimes the
multiplicative form results in simpler expressions. For multiplicative parameters the identity
is α = 1 rather than 0.

Let dynamical systemS be defined by the recursion equation (2.1). A solution is a
sequence{xm} of points inCn such that

xm+1 = f (xm). (3.2)

Following Lie [1] and Maeda [12], we say thatG is a symmetry group ofS or thatS admits
G if G takes solutions into solutions, so that whenever equation (3.2) holds

u(xm+1, α) = f (u(xm, α)) (3.3)

or

u(f (x), α) = f (u(x, α)). (3.4)

It is equivalent [12] to say that the mappingsf andgα commute for eachα, so that

f gα = gα f. (3.5)

An alternative terminology for the commutivity off with group membersgα is to say that
the mapf is equivariant with the groupG (see [19]). Expressed graphically the condition
is that the following diagram commutes for eachgα.

x
f−→ X

gα ↓ ↓ gα
xα

f−→ Xα.

We call any map such asgα in equation (3.5) that commutes withf a symmetry ofS.
Quispelet al [25] point out that although the systemS may be autonomous, the most

general symmetry can involve the discrete, independent variablem in equation (3.2). The
group does not transformm, butx transforms in a way that depends onm as well as onα so
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thatxα = u(x,m, α) andXα = u(X,m+1, α). The general criterion for a non-autonomous
dynamical system to admit such a group [25] is

u(f (x,m),m+ 1, α) = f (u(x,m, α),m). (3.6)

We will use group generators to obtain canonical coordinates that decouple the dynamical
system. For each parameterαi , a generator is defined by power series expansion near the
identity

u(x, α) = x + αi ξi(x)+ · · · (3.7)

with summation on the repeated index. The components of the tangent vectorξi(x)

corresponding toαi are,

ξ
j

i (x) =
∂ uj (x, α)

∂αi

∣∣∣∣
α=(0,0,...)

. (3.8)

Tangent vectorξi(x) for fixed i corresponds to the group generatorLi which is the directional
derivative

Li = ξ ji (x)
∂

∂xj
. (3.9)

Then withα · L = αi Li , sinceG is connected, one has

eα·L x = u(x, α) (3.10)

so thatgα = eα·L. The left-hand side of equation (3.10) is the Taylor series expansion with
respect toα of the functionsu(x, α) which definegα.

The Lie algebraL associated with the groupG is generated by the set{Li}ri=1
with bracket [Li ,Lj ] denoting the commutator of directional derivatives. The linearity,
anti-symmetry, and Jacobi non-associativity therefore follow immediately. The structure
constants{Ckij } appearing in

[Li ,Lj ] = Ckij Lk (3.11)

characterize the Lie algebra completely [40]. A transformation of the coordinatesx leaves
the structure constants unchanged, while a change of parametrizationα gives a linear
transformation via a constant, non singular matrix. Thus reparametrizing can simplify the
structure constants and put the algebra into a normal form [3].

4. Relation between fixed and invariant sets ofG and of S

For finding symmetries it is useful to know the relation between fixed or invariant sets of
S and fixed or invariant sets of its symmetry group [27–29]. The first step is to find the
fixed points from

f (x)− x = 0. (4.1)

(Points at infinity in the sense of projective geometry are included using homogeneous
coordinates as described below.) Some fixed points are isolated while others belong to
continuously connected sets of fixed points. We shall see presently that isolated fixed points
of S must also be fixed points ofG. This fact gives clues to the form that a symmetry group
must take. Invariant sets ofS are equally important, although we know of no systematic
way to find them.
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The set ofpth inverse images of an isolated fixed point is another significant attribute
of S. Generally the mapf definingS is not invertible. The inverse image or preimage
f −1(x0) of point x0 is the solution set of

f (x)− x0 = 0. (4.2)

The preimage of a set is the union of the inverse images of its points. Thepth inverse
image of fixed pointx∗ is the set of allx which f p takes intox∗.

Factoring equation (4.2) may resolve separate components of the inverse image. These
are the sets upon which the individual factors vanish. One must be careful since computer
algebra normally factors over the rationals, while physical problems pertain more naturally
to the field of real or complex numbers. For example

x4− 2x2 y2+ y4− 10x2− 2y2+ 1= (x2− y2− 2
√

3x + 1) (x2− y2+ 2
√

3x + 1)

(4.3)

the zero set of which is the union of two hyperbolae, but the left-hand side is irreducible
over the rationals. Typically in two dimensions, the zeros of the individual factors define
curves. In higher dimensions the factors give higher dimensional sets.

Now consider the action ofG on a fixed point ofS. SupposeS contains fixed pointx∗
so that

f (x∗) = x∗. (4.4)

Application of gα to x∗ yields

u(x∗, α) = x∗α. (4.5)

However, sincegα and system mapf commute

u(f (x∗), α) = f (u(x∗, α)) (4.6)

or combining equations (4.4)–(4.6) inclusive,

u(x∗, α) = f (x∗α). (4.7)

Thus

x∗α = f (x∗α) (4.8)

which shows thatx∗α is also a fixed point. Therefore a symmetry must take each fixed
point of S into either some other fixed point, or possibly itself. There are two cases: either
x∗ is isolated, meaning there is a neighbourhood ofx∗ containing no other fixed point, or
else it is not.

When x∗ is isolated it must also be a fixed point of the group, meaningx∗α = x∗
for all α. One can see this in the following way. The imagex∗α must be a continuous
function of α; therefore we must have limα→0 x∗α = x∗. Assume by way of contradiction
thatx∗α′ 6= x∗ for someα′. In view of equation (4.8), choosingε sufficiently small, we can
find a fixed point of the formx∗, εα′ in any deleted neighbourhood ofx∗ which contradicts
the assumption thatx∗ is isolated. Thus whenx∗ is an isolated fixed point ofS it is also a
fixed point ofG. Or, in the terminology of [19], the isotropy subgroup ofx∗ is the whole
groupG.

A by-product of the preceding argument is that whenx∗ is not isolated it belongs to a
continuously connected set of fixed points which we denote asG x∗. Evidently each element
gα of G permutes the points ofG x∗, i.e. it mapsG x∗ onto itself in one-to-one fashion. In
fact fixed points ofS are partitioned into equivalence classes moduloG, each of which is
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either a single fixed point or a continuously connected set. These equivalence classes are
the fixed-point manifolds ofS discussed by Golubitskyet al [19].

A similar argument applies to cycles ofS. Suppose{x1, x2} is a two-cycle, so that
f (x1) = x2 and f (x2) = x1. Both x1 and x2 are fixed points off 2, meaning that each
satisfiesf (f (x)) = x. Either they are isolated fixed points off 2 or not. If so, then since
f 2 commutes withgα if f does, bothx1 and x2 are fixed points of the groupG. If not,
then each belongs to one of two connected sets,x1 to one set andx2 to the other. The
system mapf takes the sets onto one another in such a way that each point in one set is
paired with one point in the other set to form a two-cycle off . Thus the dynamical system
exchanges the sets, while the group permutes each set. In general, ap-cycle ofS is either
isolated, in which case each of its members is a group fixed point, or else it belongs to
continuously connected sets ofp-cycles. This fact is useful for showing that a particular
system does not admit groups of a given type. Roughly, one may find that a groupG does
not have sufficiently many fixed points to cover the isolated cycle points ofS.

An equally important result can be obtained for inverse images of fixed points. Recall
that the inverse imagef −1(x∗) is the set of points which map under a single application of
f into x∗. Assuming pointx is in the inverse image ofx∗ (isolated) equation (3.4) implies
that

f (u(x, α)) = u(x∗, α) = x∗
where the result regarding isolated fixed points is used to obtain the final equality. Therefore,
a symmetry mapsf −1(x∗) into itself. Again, because the group must include the inverse
g−1
α = g−α, the mappinggα is one-to-one, i.e.gα permutes the inverse image of an isolated

fixed point.
If f −1(x∗) contains a one-dimensional set of points (an isolated curve)C parametrized

by λ, and if f commutes with a one parameter subgroup (r = 1), then

f (u(x(λ), α)) = u(f (x(λ)), α) (4.9)

implies that

f (u(x(λ), α)) = u(x∗, α) = x∗ (4.10)

assuming once again thatx∗ is an isolated fixed point. This meansu(x(λ), α) ∈ f −1(x∗)
for all α andλ, as was shown previously (i.e. by the fact thatx(λ) is in the inverse image).
However,u(x(λ), α) must tend tox(λ) continuously asα goes to zero. SinceC is an
isolated curve,u(x(λ), α) is also onC. A group trajectory is a curve,{u(x0, α) : α ∈ R},
along which the image of an initial point moves as the parameterα varies. Thus the group
moves initial points belonging toC along the curve, which therefore consists of trajectories
of the group. These trajectories form segments ofC that can be connected to one another
only at fixed points of the group that are approached asα→±∞.

If one trajectory is known then another may, in general, be obtained by applyingf .
Suppose a group trajectoryC parametrized byλ is known such that for eachα

u(x(λ), α) = x(λ′) for λ, λ′ ∈ I (4.11)

for all λ whereI is some interval used for parametrizing. Supposef takes the curveC
onto some other curveD defined as

D = {x̃(δ) : δ ∈ I} = {f (x(λ)) : λ ∈ I} (4.12)
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the image of the trajectory under the system mapping. Choosing, anyδ1

u(x̃(δ1), α) = u(f (x(λ1)), α)

= f (u(x(λ1), α))

= f (x(λ2))

= x̃(δ2)

for someλ1, λ2, andδ2 which satisfy the above conditions. Thus,D is another trajectory
of the group since

u(x̃(δ1), α) = x̃(δ2) for δ1, δ2 ∈ I. (4.13)

Finally, a one-dimensional inverse image of a group trajectory must be a set of group
trajectories. Suppose thaty is an arbitrary point element of the inverse image ofx, so that
x = f (y). Thenu(x, α) = u(f (y), α) = f (u(y, α)) so thaty belongs to a trajectory in
the inverse image of the trajectory to whichx belongs.

Thus we have demonstrated several relationships between fixed and invariant sets of a
dynamical system and fixed and invariant sets of any group the system admits. The strategy
given below for finding groups will use these relationships.

Knowing the structure of continuously connected sets of fixed points ofS is also valuable
for determiningG. As seen above, for fixed sets of higher dimension, e.g., surfaces, the
only thing required of a symmetry is that it map the set back into itself in one-to-one
fashion. Fixed sets ofS that form one-dimensional curves are especially important. In
particular, a fixed curve ofS must be a trajectory of the symmetry group or must form a
set of trajectories, the end points of which join at fixed points ofG. Inverse images of these
trajectories under the system mapf also consist of group trajectories. An intersection of
trajectories must be a fixed point ofG.

Starting from the set of fixed points ofS one takes inverse images to obtain invariant sets
of G. In two dimensions, factorization can often identify trajectories. In higher dimensions
the process is more apt to result in higher dimensional invariant sets. However, such sets
often occur in intersecting families. The one-dimensional subsets obtained as intersections
of invariant sets comprise trajectories of the symmetry group. Once some group trajectories
are determined, others can be found by continuing to take inverse images. The inverse
image sets may or may not be one-dimensional curves. Sets that form curves must yield
trajectories ofG.

Information obtained from the construction described in this section can yield pictures
of the group flow detailed enough to reconstruct the group, e.g., by determining the form
of its generators. But most importantly, this information is often sufficient to tell whether
or not a given systemS admits any of the elementary Lie groups classified in the following
sections.

5. Systems admitting subgroups of PGL(n)

One approach taken by Lie to the problem of finding symmetries is to find the set of
differential equations admitting a given group. Thus one can catalogue systems of equations
systematically in order of increasing complexity of their symmetry groups. In this and the
following section we treat discrete dynamical systems admitting subgroups of the projective
general linear groups PGL(n) and certain subgroups of the quadratic Cremona groups inn

variables respectively. The main tool is the collection of results in section 4 relating fixed
and invariant sets of a groupG with those of a dynamical systemsS admittingG. Finally
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by comparison with standard forms of PGL(n) and the Cremona subgroups we reduce the
order of several examples of systemsS appearing in the literature. It should be mentioned,
though it may be obvious, that the dynamical systemS itself is not supposed to consist of
either a linear fractional or a Cremona transformation, although the latter is a special case
of interest [33–39].

Discussion of PGL(n) [41] is simplified by the use of homogeneous coordinates. The
n-dimensional projective space includes finite pointsx together with points at infinity. Letv
be a non-zero vector ofn + 1 homogeneous coordinates such thatxk = vk/vn+1 for each
component 16 k 6 n. Points at infinity in the projective space are the points for which
vn+1 = 0. Points at infinity with homogeneous coordinate vectors+v and−v are identified
as the same point. Therefore elementg of PGL(n) corresponds to an invertible, linear
transformationA acting on the homogeneous coordinates. There are(n+ 1)2 entries inA
but because a pointx corresponds to a rayλv the group hasn(n + 2) parameters. Fixed
points correspond to eigenvectors ofA.

PuttingA in Jordan formC by means of a similarity is the same as puttingg in a
standard formĝ by conjugating with a fixed projective transformationγ . Thus the matrix
C = M AM−1 corresponds to the compositionγ g γ−1 which definesĝ. One can classify
a subgroupG of PGL(n) according to the formC and the transformation matrixM which
puts the generalized eigenvectors ofA in a standard configuration, i.e. along the coordinate
axes.

The number of generalized eigenvectors ofA is n+1, the dimension of the homogeneous
space. The matrixM should take each generalized eigenvector into one of the coordinate
basis vectors. We refer to the coordinates with respect to the basis of generalized
eigenvectors ofA as standard variables. They are related to the canonical group coordinates
introduced in section 7. Different cases can be distinguished according to the Jordan form
C.

Consider a two-dimensional system,n = 2. In the standard coordinatesC is one of the
following forms: a 0 0

0 b 0

0 0 1

  a b 0

0 a 0

0 0 1

  1 a 0

0 1 a

0 0 1

 . (5.1)

To each of these belongs a family of subgroups, characterized by properties of its fixed and
invariant sets [41]. For simplicity, let the Jordan forms relate to homogeneous standard
coordinates(u, v,w) and let(x = u/w, y = v/w) be standard dynamical variables.

The first form in the list (5.1) has three distinct eigenvalues and three eigenvectors
forming a basis whereC is diagonal with eigenvaluesa, b, and 1. Assume first that these
are real. For this case, there are additive parametersα andβ such that eα = a and eβ = b
andg maps(x, y) to (eα x, eβ y), so that the fixed points in standard coordinates are(0, 0),
(∞, 0) and(0,∞). One is a source, one a sink and the other a saddle, in the general case.
In the special case when two of{a, b,1} are equal, there is a one parameter subgroup with
a line of fixed points either on an axis or at infinity. The latter is a uniform dilation in
the standard variables, which is of practical importance. The case of a symmetry that is
a rotation or spiral group in the standard variables (which appears to be less common in
physical problems) is included whena andb are complex conjugate. When the dynamical
systemS is complex, the eigenvalues and generalized eigenvectors are naturally complex.

For the second Jordan form, there are again two parameters eα = a and β = b, and
(x, y) maps to(eα x+β y,eα y). By permuting the standard homogeneous coordinates one
also has(eα x, y + β) and (x/(β x + 1), eα y/(β x + 1)) and so on. The subgroups of this
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type are characterized by a fixed point with an invariant line through it and a second distinct
fixed point not on the invariant line. The special casea = 1 includes translations such as
(x, y + β). The feature characterizing this special case is a single line of fixed points.

The third form maps(x, y) to (x+α y, y+α) with the additive group parameterα = a.
Again the coordinates may be permuted, but for each permutation the subgroup is still
characterized by a single fixed point with a invariant line through it.

The question is whether or not a particularS admits a subgroup of PGL(n). If it does,
then in the homogeneous coordinatesv one can find a transformation that puts the matrix
A of each element of a one-parameter subgroup in the same Jordan formC. Then it must
be possible to express each entry ofC in terms of the group parameter so as to satisfy the
symmetry condition, equation (3.5).

Both the number and type of fixed and invariant sets of a dynamical systemS admitting
a subgroupG of PGL(n) are restricted. For the diagonalizable case ofA with distinct
eigenvalues, corresponding to the first Jordan form of equation (5.1), the numbern+ 1 of
group fixed points limits the number of isolated fixed or cycle points ofS. WhenG fixes
a subspace,S can have rather general sets of fixed points and cycles within the subspace,
which must be a hyperplane of dimension6 n − 1. WhenG has invariant hyperplanes,
these must be either fixed or invariant hyperplanes ofS.

Therefore, givenS, one first finds the set of fixed points. If either the cardinality or
the type does not fit the constraints of PGL(n), then the symmetry groupG contains no
subgroup of PGL(n). Next one looks at the set ofp-cycles up to a convenient maximump
to see whether the cardinality or type rules out PGL(n). If not, one can try the assumption
that there is indeed a projective linear symmetry. A single projective map should place the
fixed points, cycle points and invariant sets ofS in standard position. If the system admits
a subgroup corresponding to one of the Jordan forms, the next step is to relate entries of
C to group parameters in such a way as to form a symmetry ofS. In many cases this can
be done by inspection, otherwise the problem reduces to one of dimensional analysis, since
for each one-parameter subgroup, each matrix entry must be a power of the multiplicative
group parameter. Each matrix element can therefore be set to a power of the parameter and
the exponents treated as undetermined coefficients. The procedure is applied to physical
examples in section 8 below.

6. Lie subgroups ofCn

The Cremona group [31, 32]Cn is the group of all birational mappings taking the projective
space ofn variables into itself. To say a mapping is birational is to say that it is defined
by rational functions, that it has an inverse, and that the inverse is also defined by rational
functions.

For example,C1, the group of birational maps of the projective line into itself, is nothing
other than PGL(1), namely the linear fractional or Möbius transformations. The groupC2 is
generated by PGL(2) and the single quadratic transformation taking(x, y) to (1/x, 1/y), or
in homogeneous coordinates, taking(u, v,w) to (vw,wu, uv). Knowledge ofCn for n > 3
is limited mostly to a collection of examples [32]. Apparently these include PGL(n) and
the special conformal group inn variables as finitely generated subgroups.

Maillard et al [33, 34, 36–38] and Veselov [39] have studied dynamical systems defined
by several types of Cremona mappings. These include polynomial maps in two dimensions
that have polynomial inverses. Maillard and coworkers derive many interesting properties
for dynamics of Cremona maps obtained as the products of involutions [35]. The dynamical
variables are entries in aq×q matrix. The involutions are matrix inversion, diadic (element
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wise) inversion, transposition of certain matrix entries, etc. The maps have their origin in
the theory of exactly solvable vertex models [14, 15].

Integrability of the systemS depends on the way certain numerical characteristics (such
as the complexity introduced by Arnold [42]) of thepth iterationf p of the system mapf
grow with p. Veselov established this for the special case of polynomial automorphisms in
(x, y). The relation between growth of complexity and integrability of the maps studied by
Maillard et al was demonstrated for particular cases by Viallet and Falqui [43]. Our concern
will be not with the dynamics of Cremona maps but with the larger class of dynamical
systems which admit connected Lie subgroups ofCn as symmetries. We are unable to deal
with the most general case. We restrict attention to certain quadratic Cremona subgroups.
Nevertheless, these special subgroups are sufficient for decoupling a variety of maps that
arise in physical problems, as will be seen in section 7.

Consider first the projective plane,n = 2. A quadratic Cremona transformation is one
for which the degrees of the numerator and denominator polynomials defining the map in
homogeneous coordinates are 2. The theorem of Bezout shows that the curves defined as
zero sets of two polynomials of degreesm andn and having no common factors intersect at
mn points. One must include complex points, count degenerate intersections appropriately,
and include points at infinity in the projective sense. Therefore two distinct quadratic curves
intersect at four points.

SupposeS1(x, y) andS2(x, y) are quadratic polynomials inx andy, meaning that the
highest combined power is 2 in each case. A pencil of quadratic curves, or conic sections,
can be parametrized asS1(x, y) − aS2(x, y) = 0. Each curve in the family corresponds
to a choice ofa, and for anya the curve passes through the four points where the curves
S1(x, y) = 0 andS2(x, y) = 0 intersect. We shall call these four points base points. Special
cases arise when two base points coincide. For example, ifS1(x, y) = y − (1+ x)2 and
S2(x, y) = 2x2, there are two, distinct, complex base points and a confluence of two base
points at∞ along they axis. At the confluence, all the curves of the family must have
the same tangent. In general we assume the base points are distinct and that one can treat
confluent base points as limits.

A general quadratic polynomialP(x, y) has five parameters. Forcing the curve
P(x, y) = 0 to pass through four base points fixes four of the coefficients, leaving only
one free parameterb, say. Thus there is a unique one-parameter family of quadratic curves
passing through the four points. Hence for a given set of base points, the parametera

in S1(x, y) − aS2(x, y) must be an invertible function of the parameterb in P(x, y) so
that these two functions represent different parametrizations of the same family of curves.
Thus it is convenient to choose the following parametrization. Let the linesLk(x, y) = 0
for k = 1, 2, 3 or 4 each pass through two base points so as to form a quadrilateral. Let
P(x, y) = L1L2 − bL3L4. According to Bezout’s theorem, any line must intersect each
curve in the family exactly twice. LetQ(x, y) = L1− aL3 so thatQ(x, y) = 0 is a pencil
of lines passing through the base point where lines 1 and 3 intersect. For each choice of
(a, b), the line and the curve intersect at the base point and at one other point(x, y). Thus

L1− a L3 = 0 (6.1a)

L1L2− b L3L4 = 0 (6.1b)

define a birational transformation between the(x, y) and the(a, b) coordinates. Thus we
have a single Cremona transformationh between two planes, defined by rational functions
such that(a, b) = h(x, y), and h−1 defined by(x, y) = h−1(a, b). Define ĝα acting
on the (a, b) coordinates by the replacementĝα(a, b) = (eα a, b). Then the composition
gα = h ĝα h−1 is a one-parameter, connected Lie subgroup ofC2 acting in the(x, y) plane.
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A similar construction applies, with some loss of generality, for subgroups ofCn
with higher n. For instance whenn = 3 supposeLk(x, y, z) = 0 for k = 1, 2, . . . ,6
are planes. Define a mappingh and its inverse such that(a, b, c) = h(x, y, z) and
(x, y, z) = h−1(a, b, c) by solving

L1− a L2 = 0 (6.2a)

L1L3− b L2L4 = 0 (6.2b)

L1L5− c L2L6 = 0 (6.2c)

either for (a, b, c) or (x, y, z). Alternatively, a cubic subgroup ofCn is generated byh
obtained from the set of equations

L1− a L4 = 0 (6.3a)

L1L2− b L4L5 = 0 (6.3b)

L1L2L3− c L4L5L6 = 0. (6.3c)

A single projective map can put the base points in standard locations. Forn = 2 the base
points can be placed at(0, 0), (0,∞), (∞, 0) and at(1, 1). Group flow can be chosen to be
from (0, 0) to (1, 1). Two saddle points appear automatically at(1, 0) and(0, 1). Thus the
group flow is characterized by a source, a sink, two saddle points and four invariant lines.
The group invariant lines can be any combination of fixed or invariant lines ofS or may
belong to thepth preimage of some invariant set ofS. To see whether a given systemS
admits such a group, one proceeds as in the case of PGL(n) by examining fixed and invariant
sets of the system. Since the group actionĝα is just dilation inb, the transformationh itself
decouples the dynamical system.

7. Canonical forms and canonical variables

In this section canonical variables are tabulated for groups with elementary Lie algebras
(see also [3]). Once a continuous symmetry has been found forS the next step is to reduce
the order. To motivate the introduction of canonical variables, we illustrate this reduction
for a simple example [25]. Consider a system with a two-variable recursion. If we represent
components of the dynamical vectors byx andy to lighten the notation, then the recursion
equations (2.1) are of the form

X = f (x, y)
Y = g(x, y).

(7.1)

In this case only one symmetry is needed to decouple the system. Suppose a symmetry is
generated by

L = ξx(x, y) ∂
∂x
+ ξy(x, y) ∂

∂y
. (7.2)

Canonical variables(a, b) may be chosen such that

L = ∂

∂a
(7.3)

provided that two partial differential equations

L a = 1 (7.4a)

L b = 0 (7.4b)
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can be solved to yield transformations

a = a(x, y) b = b(x, y) (7.5a)

x = x(a, b) y = y(a, b). (7.5b)

Expressed in terms of terms of(a, b) the general dynamical system becomes

A = f̂ (a, b)
B = ĝ(a, b)

(7.6)

where the hats indicate functionsf andg in equations (7.1) are transformed using equations
(7.5a) and (7.5b). To see that a decoupled system results, return to the normal form of the
symmetry generator.L = ∂/∂a implies that the symmetry transformation may be written

aα = a + α bα = b (7.7)

whereα is the group parameter. Sincegα andf must commute

A+ α = f̂ (a + α, b)
B = ĝ(a + α, b).

(7.8)

However, becauseα is arbitrary one finds that

A = a + f̂ (0, b)
B = ĝ(0, b)

(7.9)

so that in fact the function̂g(a, b) cannot depend ona, and f̂ (a, b) must be linear ina.
Thus the order of the system has reduced by one.

The obvious way to approach a system admitting anr-parameter group is to reduce first
by using a one-parameter subgroup corresponding to a single generator. Then one would
continue reducing step by step. The question is whether or not, after thepth reduction step,
the reduced system still admits an(r − p)-parameter group. We proceed by organizing
groups according to the structure of their Lie algebras [40].

First consider ann-dimensional system admitting anr-dimensional Abelian symmetry
group(r 6 n) such that

[Li ,Lj ] = 0. (7.10)

Also assume the symmetry generators are independent so that the tangent vectors at each
point x span anr-dimensional space. We can augment the basis to includen generators
in all, the first r of which are symmetries, any two of which commute, and such that the
tangent vectors spann-dimensional space. In this simple case, each of the generators may
be written in a normal form

Li = ∂

∂ai
. (7.11)

Equations (7.4a) and (7.4b) can be generalized to matrix form such that

ξ A,x = 1 (7.12)

whereξ is a matrix with(i, j)th entryξ ji , A,x is the Jacobian matrix with(A,x)kj = ∂ak/∂xj ,
and 1 is the identity matrix. With this notation, the transformation functions{ai(x)} are
obtained from

A,x = ξ−1 (7.13)
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and so

ai(x) =
∫ [

(ξ−1)i1 dx1+ (ξ−1)i2 dx2+ · · · + (ξ−1)in dxn
]
. (7.14)

The form of the reduced system is

Ai =
 a

i + f̂ i(0, . . . , ar+1, . . . , an) for i 6 r

f̂ i(0, . . . , ar+1, . . . , an) for i > r.
(7.15)

When the group is Abelian the generators commute in pairs, so the step-by-step
reduction to equation (7.15) would seem to depend on whether or not the tangent vectors are
independent. Consider for example an Abelian group with two generatorsL1 andL2 that
commute but such that det(ξ) vanishes. In this case a change can be made to coordinates
(a, b) where the generators become

L1 = ∂

∂a
(7.16a)

L2 = b ∂

∂a
. (7.16b)

The group transformations are

aα = a + α (7.17a)

aβ = a + β b. (7.17b)

Following an argument like the one leading from equation (7.7) to equation (7.9), the fact
thatL1 andL2 must commute with the system map results in

A = a + f̂ (0, b)
B = b.

(7.18)

The point is that sinceL1 and L2 are not independent it would appear that the order
should reduce only by one. However, the solution forb is obviously constant, so another
simplification occurs due to the second symmetry.

In a three-dimensional Abelian case for which

det(ξ) = 0 (7.19)

again one generator can be expressed in a normal formL1 = ∂/∂a. The simplest case
involving all three letters is

L1 = ∂

∂a
(7.20a)

L2 = b ∂

∂a
(7.20b)

L3 = c ∂
∂a

(7.20c)

so that all three group generators act in the same one-dimensional subspace. A second
case is

L1 = ∂

∂a
(7.21a)

L2 = ∂

∂b
(7.21b)

L3 = v(c) ∂
∂a
+ w(c) ∂

∂b
. (7.21c)
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For the first case in which the generators span a one-dimensional subspace, the group
action must be

aα = a + α (7.22a)

aβ = a + β b (7.22b)

aγ = a + γ c (7.22c)

where the notation follows equations (7.20a)-(7.20c) and no formulae are given forb or
c because these coordinates are unchanged. Since the subgroup corresponding to each
parameterα, β, and γ must commute with the system mapping, the recursions reduce
completely to

A = a + f̂ (0, b, c)
B = b
C = c.

(7.23)

Now consider the second case represented by equations (7.21a)-(7.21b) in which the
generators act in a two-dimensional subspace. The group action must be

aα = a + α (7.24a)

bβ = b + β (7.24b)

aγ = a + γ v(c) bγ = b + γ w(c) (7.24c)

where again no formulae are given for the unchanged coordinates. The reduced recursions
are

A = a + f̂ (0, 0, c)

B = b + ĝ(0, 0, c)

C = c.
(7.25)

Thus, in each case the order is reduced and the system decouples completely.
To illustrate the case of independent generators that do not commute in pairs, i.e. [Li ,Lj ]

is not zero for everyi andj , we begin with the example of a two-variable dynamical system.
Two generatorsL1 andL2, can be found such that

[L1,L2] = L1. (7.26)

This is the most general non-Abelian case with two independent generators [3, 40]. In terms
of a andb a normal form is

L1 = ∂

∂a
(7.27a)

L2 = a ∂

∂a
+ b ∂

∂b
(7.27b)

representing simple translation and dilation. The transformation associated withL1 is

aα = a + α. (7.28)

The second transformation acts on botha andb such that

aβ = eβ a bβ = eβ b. (7.29)

These symmetries must commute with the system mapping. The application of the two
transformations equation (7.28) and (7.29) in either order results in a two-parameter
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transformation of the same form but with a slightly different parametrization. The reduced
system in(a, b) becomes

A = a + η1 b

B = η2 b
(7.30)

whereη1 andη2 are constants. The reduced equations (7.30) solve trivially.
Next consider the three dimensional Lie algebra with commutators

[L1,L2] = 0

[L1,L3] = 0 (7.31)

[L2,L3] = L1

where it is assumed that det(ξ) does not vanish. A normal form is

L1 = ∂

∂a
(7.32a)

L2 = ∂

∂b
(7.32b)

L3 = b ∂

∂a
+ c ∂

∂c
. (7.32c)

The associated transformations in(a, b, c) are

aα = a + α (7.33a)

bβ = b + β (7.33b)

aγ = a + γ b cγ = eγ c. (7.33c)

The reduced system is

A = a + η1

B = b
C = η2 c

(7.34)

whereη1 andη2 are constants.
Finally, consider non-commuting generators for which the tangent vectors are not

independent, so that det(ξ) vanishes. To demonstrate this, we focus again on the case
of two generators. Assume the commutator betweenL1 andL2 is

[L1,L2] = L1. (7.35)

A normal form in this case is

L1 = ∂

∂a
(7.36a)

L2 = a ∂

∂a
. (7.36b)

In normal coordinates the reduction of order results from the corresponding finite
transformations

aα = a + α (7.37a)

aβ = eβ a. (7.37b)
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This leads directly to

A = a
B = ĝ(0, b)

(7.38)

so that the system decouples using either symmetry, but even using both together does not
result in a complete solution, since the recursion forb is quite general.

At this time we know only the following regarding a general criterion to guarantee
that a particularG with r generators will reduce the order of a systemS with which it
commutes by exactlyr. The algebra defined in each example in this section is solvable in
the sense that the limit of the sequence of derived algebras is the algebra containing only
zero [40]. Examples given by equations (7.27), (7.32) and (7.36) are non-Abelian. Only in
the non-Abelian case with dependent tangent vectors, det(ξ) = 0, are we unable to reduce
the order of the system byr, the number of group parameters.

8. Examples

The purpose of this section is to illustrate the use of tools developed in sections section 4
through 7. Most of the examples of dynamical systems are drawn from other papers in order
to demonstrate the relevance of the group theoretic methods to actual physical problems.
Only a cursory explanation of the original problem is given for each example. We have
attempted to suggest physical meanings for the variables. The interested reader is invited to
consult the references cited for a full definition and further information. Our main concern
will be with reducing the order of the dynamical systems in each case.

Adler [44] considers the problem of Stokes flow on an anisotropic Sierpiński gasket,
each triangular unit cell of which has equal resistance on two edges and different resistance
on the third. Recursions for the elements of a transfer matrix relating pressure to flow rate
are

X = x (7x + 4y) (x − y)
2(2x − y) (3x + y)

Y = (x − y) (x2− 4x y − 2y2)

2(2x − y) (3x + y)

(8.1)

wherey is the conductance along the odd edge andx is the negative of the sum of the
conductance along one of the equal edges and conductance along the odd edge. Since the
recursions are homogeneous, they admit a dilation symmetry. Thus

L = x ∂

∂x
+ y ∂

∂y
(8.2)

which leads by way of equations (7.2) through (7.4b) to

a = ln(1/x) b = y/x (8.3)

for canonical variables. The recursion equations (8.1) become

A = a + ln

[
2(b − 2) (b + 3)

(b − 1) (4b + 7)

]
B = − 2b2+ 4b − 1

4b + 7
.

(8.4)

Recognizing homogeneity of equations (8.1), Adler has used canonical variables to decouple
them and study scaling of the conductance. Adroveret al [45] study scaling cross-over in
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a related model for diffusion in anisotropic media and use dilation symmetry to decouple
similar recursions. Giona [30, 28] observed that the dilation symmetry in circuit models of
this sort comes form the fact that scaling the resistance of each link byλ merely scales the
total resistance byλ. This is related to current conservation.

Suppose one did not notice the dilation symmetry of equations (8.1). The analysis
would proceed as follows. The only fixed points are(0, 0) and (∞,∞). The points at∞
map into one another, so the line at∞ is invariant underS. This allows the line at∞ to be
fixed byG. The system can admit the PGL(2) subgroup belonging to the first Jordan form
in equation (5.1) with two equal eigenvalues. The inverse image of(0, 0) contains the line
x − y = 0. Successive inverse images contain lines forming a pencil through(0, 0). The
group flow is radial. Therefore the system may admit uniform dilation.

Considering vibrations of the Vicsek lattice [46], Jayanthi and Wu [47] develop
parametric recursions for determining the frequencyω from the equation of motion for
transverse vibration of the lattice with free-end boundary conditions. The four parameters
α, β, β̃ and κ of Jayanthi and Wu representing renormalized squared frequencies and
coupling constants are taken asx, y, z andk for our purposes. The recursions are

X = x + 4(4− z) k2

(4− z)2− k2

Y = x + 3k2

4− y +
(4− z) k2

(4− z)2− k2

Z = x + 2k2

4− y +
2(4− z) k2

(4− z)2− k2

K = k3

(4− z)2− k2
.

(8.5)

As in the previous example, an analysis of the fixed and invariant sets reveals a dilation
symmetry. However, the homogeneity is obscured by a shift in the centre of dilation to the
point (4, 4, 4, 0). This model admits a subgroup of PGL(4). From this symmetry we find
the canonical variables

a = (x − 4)/k b = (y − 4)/k

c = (z− 4)/k d = ln k.
(8.6)

In addition, the recursion equations in(a, b, c, d) are such that

4A+ 8B − 12C = 0. (8.7)

Thus the number of necessary variables is reduced by one. Therefore, the number of
recursions is reduced again by one. Solving fora in terms ofb andc, the final form of the
recursions is

B = − 2b2 c2− 3b c3− 2b2+ 3c2+ 4b c − 3

b

C = − 2b2 c2− 3b c3− 2b2+ 2c2+ 5b c − 2

b

D = d + ln(c2− 1).

(8.8)

The above result does not admit a further subgroup of PGL(n) or a Cremona subgroup
of the sort developed in section 7 for the following reasons. Consider the(b, c) recursions.
One finds eight fixed points on two parallel lines, four on each line. This immediately
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excludes the PGL(2) subgroups. The Cremona subgroups are eliminated because both the
total number of fixed points and the number per line exceeds the maximum allowed. In
fact M Schwalmet al showed that the vibrational problem for the Vicsek lattice with free-
end boundary conditions can be renormalized in such a way that the recursions decouple
completely [48].

Hood and Southern [49] consider Schrödinger eigenstates of an anisotropic fractal lattice.
The model consists of a tight-binding Hamiltonian matrixH on a Sierpínski lattice with
strong and weak bonds. The strong bonds form a continuous self-avoiding walk from one
corner to another. They derive decimation recursion relations for variables which we shall
call (x, y, z) related to the energy and bond strength. The recursions are

X = 2x2 y z+ x3+ 2x y z+ y z
1− 3x2− 4y z− 6x y z

Y = (x + 1) y (2y z+ x)
1− 3x2− 4y z− 6x y z

Z = z (2y z + x)
1− x − 6y z

.

(8.9)

We find two isolated fixed points(− 1
2, 0, 0) and(0, 0, 0) and two fixed lines(x = 1

2, y = 0)
and (x = 1

4, y = 1
16 z). These lines must be group trajectories. Taking further inverse

images, we find more group trajectories of the form(y = b/z, x = c). Each trajectory is
mapped by the system onto another of the same form but for differentb andc. Thus, the
group flow in the(y, z) subspace is(eα y, e−α z) so that

L = y ∂

∂y
− z ∂

∂z
. (8.10)

In convenient canonical variables

a = ln y b = y z c = x (8.11)

the system reduces to

A = a + ln

[
(c + 1) (2b + c)

1− 4b − 3c2− 6b c

]
B = (b (c + 1) (2b + c)

(6b + c − 1) (3c2+ 6b c + 4b − 1)

C = c3+ 2b c2+ 2b c + b
1− 4b − 3c2− 6b c

.

(8.12)

Once again, the system equations (8.9) admit a subgroup of PGL(3) which results in
reduction of order. Hence the model of Hood and Southern reduces to a dynamical system
in two variables.

The recursions forb andc do not admit any of the subgroups discussed above because
the number of isolated fixed points and crossings of their successive inverse images forces
the number of group fixed points to grow beyond the limits imposed by the properties of
PGL(2) or C2.

One way to treat dynamical models like diffusion, vibrations or the Schrödinger equation
that contain a Laplacian operator is to make space discrete. The difference Laplacian
involves the adjacency matrixH for a graph representing a quadrature grid. Physical
quantities of interest are computed efficiently from Green functions. If Laplace or Fourier
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transforms are taken from time to some complex transform parameterE, the Green functions
or transfer functions are entries ofG(E) = (E −H)−1.

As an example involving Green functions, consider the modified rectangle lattice of
Dhar [50]. Reeseet al [51] derived renormalization recursion relations for a small set of
Schr̈odinger propagators on the modified rectangle. Ifi, j and k represent sites on three
consecutive corners of the rectangle, thenx = Gi,i , y = Gi,j , u = Gj,k andv = Gk,i . The
recursions can be simplified using point symmetrized variables [52](p, q, r, s) such that

p = x + y + u+ v q = x − y + u− v
r = x + y − u− v s = x − y − u+ v.

(8.13)

The recursions in(p, q, r, s) are

P = p + q − 2p q

2− p − q

Q = r + s − 2r s

2− r − s
R = p + q + 2p q

2+ p + q

S = r + s + 2r s

2+ r + s .

(8.14)

One finds that hyperplanesp = 1 and s = −1 are invariant. The preimage ofp = 1
containsr = 1 and the preimage ofr = 1 containsq = 1 ands = 1. The preimage of
s = −1 containsq = −1, the preimage of which isr = −1. We find group invariants and
fixed points at the intersections of the hyperplanesp = ±1, q = ±1, r = ±1 ands = ±1.
A Cremona transformationh defined using

(1+ p)− a (1− p) = 0 (8.15a)

(1− p) (1+ q)− b (1+ p) (1− q) = 0 (8.15b)

(1− p) (1+ r)− c (1+ p) (1− r) = 0 (8.15c)

(1− p) (1+ s)− d (1+ p) (1− s) = 0 (8.15d)

leads via equations (6.1a) and (6.1b) to theC4 subgroup generated by

L = 1
2

[
(p2− 1)

∂

∂p
+ (q2− 1)

∂

∂q
+ (r2− 1)

∂

∂r
+ (s2− 1)

∂

∂s

]
. (8.16)

The introduction of canonical variables(a, b, c, d) gives the reduced system

A = 2a b

b + 1

B = c d (b + 1)

b (c + d)

C = (b + 1)2

4b

D = (b + 1) (c + d)
4b

(8.17)

where the decoupling ofa may be clearer using the proper canonical variable lna, but the
relation between equations (6.2a)–(6.2c) and equations (8.15a)–(8.15d) is more clear when
the logarithm is not used.
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As a final example consider the recursions obtained by W Schwalmet al [28] for
Schr̈odinger Green functions of a fourfold coordinated Sierpiński lattice with the corner
sites removed. For the symmetry adapted propagators(p, q, r, s, t) defined in [28], the
recursions are

P = p + t2(1− 4p)

(1− 2 t − 4p) (1+ t − 4p)

Q = q + (t − 2r)2

1+ t − 4p

R = t (2 t2+ r − 2 t r − 4p r)

(1− 2 t − 4p) (1+ t − 4p)

S = − (t − 2r) r

1+ t − 4p

T = t2 (1+ 2 t − 4p)

(1− 2 t − 4p) (1+ t − 4p)
.

(8.18)

Constructing fixed and invariant sets and proceeding as in section 5 one finds that this
system admits the PGL(5) symmetry subgroup generated by

L1 = ∂

∂q
(8.19a)

L2 =
(
p − 1

4

)
∂

∂p
+ q ∂

∂q
+ r ∂

∂r
+ s ∂

∂s
+ t ∂

∂t
(8.19b)

L3 =
(
p − 1

4

)
∂

∂p
+
(
r

2
+ t

4

)
∂

∂r
+
(
r

2
− t

4

)
∂

∂s
+ t ∂

∂t
. (8.19c)

These generators commute except for [L1,L2] = L1, so a normal form is

L1 = ∂

∂a
(8.20a)

L2 = a ∂

∂a
+ b ∂

∂b
(8.20b)

L3 = ∂

∂c
. (8.20c)

The canonical variables

a = q

b = t
(

1− 2r

t

)2

c = ln

(
1− 2r

t

)
d = (t − 2r)2

t (t − 2r + 2s)

f = 1− 4p

t

(8.21)
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obtained from the normal form for the generators, lead to the recursions

A = a + b

f + 1

B = b (f − 2)

(f + 1) (f + 2)

C = c + ln

(
f − 2

f + 2

)
D = f − 2

f + 2

F = f (f − 3).

(8.22)

The system is essentially decoupled.

9. Conclusion

The procedures presented above reduce the order of many discrete dynamical systems arising
from renormalization of lattice problems. Several of these appear as examples in section 8.
In each case known to us where the method succeeds, the system admits a subgroup of
PGL(n) or a quadratic Lie subgroup ofCn of the form discussed in section 6. The central
problem of deducing whether or not a given system admits a group of either of these types
is addressed in sections 5 and 6.

The relation discussed in section 4 between the invariant sets of a group and of the
systems it admits has shown to be a key element, both in characterizing systems admitted
by a given type of group and in using the group to reduce the order of a system. Thus the
groups dealt with in sections 5 and 6 are classified according to their fixed and invariant
sets. The method of constructing canonical group coordinates, once the symmetry group is
known, and the method of reduction of order is developed systematically in section 7.

It is of at least equal importance that one can often show conclusively by generating
invariant sets that a given system does not admit a symmetry of either of the types we have
examined. The utility of this should not be underestimated.

Use has been made of two group classifications, a global one in terms of fixed and
invariant sets in the space where the group transformations operate and a local one in terms
of Lie algebras. The first one is made modulo fixed transformations of PGL(n) or Cn that
put the fixed and invariant sets ofG in a standard configuration. The second classification
is made modulo the linear transformations in the space of generators which corresponds
to reparametrizing the group. One is then left with a finite set of normal forms. Results
presented above suggest that continuing a systematic program of classification and reduction
of this sort may lead to results quite useful for analyzing general discrete systems. On the
other hand, at the present time even the generalCn is not fully characterized forn > 3, so
the synthetic method cannot produce fully general results.

Acknowledgments

The authors thank C Reese and C Wagner for providing equations (8.14). WS acknowledges
relevent discussions with M Giona and with M Schwalm.



Lie groups and discrete dynamical systems 7401

References

[1] Lie S 1891 Vorlesungen ¨uber Differentialgleichungen mit Bekannten Infinitesimalen Transformationen
(Leipzig: Teubner)

[2] Cohen A 1911An Introduction to the Lie Theory of One-parameter Groups(Boston, MA: Heath)
[3] Stephani H 1989Differential Equations: Their Solution Using Symmetry(Cambridge: Cambridge University

Press)
[4] Ovsiannikov L V 1982 Group Analysis of Differential Equations(New York: Academic)
[5] Bluman G W and Cole J D 1974Similarity Methods for Differential Equations(Berlin: Springer)
[6] Bluman G W and Sukeyuki K 1989Symmetries of Differential Equations(Berlin: Springer)
[7] Olver P J 1993Application of Lie Groups to Differential Equations(Berlin: Springer)
[8] Ibragimov N H 1994Lie Group Analysis of Differential Equationsvols I, II and III (Boca Raton, FL: CRC)
[9] Hill J W 1982 Solution of Differential Equations by Means of One-parameter Groups(Boston, MA: Pitman)

[10] Miller W 1977 Symmetry and Separation of Variables(Encyclopedia of Mathematics vol 4) (Reading, MA:
Addison-Wesley)

[11] Leznov A N and Saveliev M V 1992Group-theoretic Methods for Integration of Nonlinear Dynamical Systems
(Basel: Birkḧauser)
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